a2 United States Patent

Neria et al.

US010275465B2

US 10,275,465 B2
Apr. 30,2019

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

METHOD AND SYSTEM FOR SCAN-FREE
DETECTION OF AUTO-COMMITTED FILES
IN A WRITE-ONCE-READ-MANY STORAGE
DEVICES

Applicant: Dell Products L.P., Round Rock, TX
(US)

Inventors: Noa Neria, Tel Aviv (IL); Itay Dar,

Rishon le Zion (IL); Michael Estrin,

Rishon le-Zion (IL)

Dell Products L.P., Round Rock, TX
us)

Assignee:

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 235 days.

Notice:

Appl. No.: 15/458,506
Filed: Mar. 14, 2017

Prior Publication Data

US 2018/0267980 Al Sep. 20, 2018
Int. CL.

GO6F 17/30 (2006.01)

U.S. CL

CPC .. GOGF 17/30085 (2013.01); GOGF 17/30188
(2013.01); GOGF 17/30227 (2013.01)

Field of Classification Search

CPC ... GOGF 17/30085; GOGF 17/30227; GOG6F
17/30188

See application file for complete search history.

Ctime

10 minutes
time | 30 minutes

¥_310 2 hoyrs

(56) References Cited

U.S. PATENT DOCUMENTS

8,516,022 B1* 82013 Kanteti GO6F 17/30188
707/827

2004/0186858 Al* 9/2004 McGovern GO6F 17/30188
2005/0097260 Al* 5/2005 McGovern GOG6F 3/0623
711/100

2005/0120025 Al* 6/2005 Rodriguez GO6F 17/30073
2007/0174565 Al* 7/2007 Merrick GO6F 17/30085
711/161

* cited by examiner

Primary Examiner — Leslie Wong
(74) Attorney, Agent, or Firm — Pearl Cohen Zedek
Latzer Baratz LLP

(57) ABSTRACT

A method and a system for detecting an occurrence of an
auto-commit operation applied to files managed by a file
server compliant with write-once-read-many (WORM)
rules. The method includes: allocating a plurality of non-
overlapping predefined time ranges starting from a newest-
changed-files time range and ending at an oldest-changed-
files time range, wherein the time ranges add up to an
auto-commit period associated with the auto-commit opera-
tion; repeatedly updating a count of files whose file-change-
time is associated respectively with one of the allocated time
ranges, wherein the updating is carried out every time the
predefined time range lapses; and detecting, every time the
time range lapses, an occurrence of an auto-commit opera-
tion applied to at least one of the files stored on the volume
within a duration of the time range since the updating,
whenever the count of the files associated with the oldest-
changed-files time range is non-zero.

20 Claims, 5 Drawing Sheets

Current time

L <t

CT
v L
Auto-commit period
Tc =2 hours Tc = 30 mins i
. _ = . Tc = 10 mins.
Retention period Tr=1 year Tr = 2 years
Tr =10 years -

U.S. Patent Apr. 30,2019 Sheet 1 of 5 US 10,275,465 B2

120 ~ 180 ~
Distributed File Server
1qn-1\
140—1\150-1\ RAM 170-1 ™ 190
. /13
rogram 160—1\) File Server h
Data
Storage
130-2~ 1g92_ Devices
140-2~ 1502~ Ram 170-2 %
N Volumes
Program . ’
160-2 File Server \J::> <::1/
Memory [&—>p < Daemons 194
. ° Cmtd.
o o 130-N ™~ Files
- - 170-N
140 N\\150 N\\ RAM ; 196
Program |160-N /‘:> i
At File Server || [N q
Memory ?lcPu > Daemons q
__')

ey
o]
O

Figure 1

US 10,275,465 B2

Sheet 2 of 5

Apr. 30,2019

U.S. Patent

¢ 9

inBi4

poued
uonusisy | poued ywwon-ony
€ > >
< i
€ €
paieleQ paJidx3 pspiwiwo]y psbueyo jou sem aji4 3|y Jenbay
o i
Bl seiEd |l eieq .,\m
0 R e s
NN A R R %
eleq eleq 3 ;
3 »Nan
Y4 09z 2 oo

US 10,275,465 B2

Sheet 3 of 5

Apr. 30,2019

U.S. Patent

¢ 2Inbid

i

!

i
2L+ WL Mexs VRS I 1T T
W +aup e || (1):21n0) |
. s o o . o . e v o
I +90+9UI RIS ™ DL+ QW LEIS | 9L+ U VRIS 1Y -2L3 US| |17 , 7B LEIS ™ 17+ DU LG pobd 17 + L auy
) w i J33uno) Ji pauaddey |
0=(1+N}Bwno) (NLawuno) rTE) 1B SI33UN0)
,@ . JWW02-010y
AN AN
(Bt Ju3031 Jsou 10/5 Js€7
I S3]14) 3015 1
s o 17 -1+ 3l e 3] Jelg
JL+MF YRS I AL WA VS | 119, T+BWA VRIS IV + W MRISE 19 + SUIN EIS AW LelS Louig
[N}s1uncy (Z)3un0y {1}une) Je sizjuno)
e
3 + 3 IS > 3l JuaLm) ﬂ,
X917 - 91 + W UeXS =< Al Juaun) {awi) ju300s 50w (Bun) 159pj0
L S3[14} 1055 25214 L s34} 1015 3521

U.S. Patent Apr. 30,2019 Sheet 4 of 5

Ctime

10 minutes

time | 30 minutes
¥_310 2 hours

US 10,275,465 B2

Current time

CT
v A 2FY
Auto-commit period
Tc = 2 hours Tc = 30 mins. '
Retention period Tr =1 year ?r: _ ;Oerglrr;&
Tr = 10 years -

Figure 4

U.S. Patent Apr. 30,2019 Sheet 5 of 5 US 10,275,465 B2

010 ALLOCATING A PLURALITY OF NON-

\d OVERLAPPING PREDEFINED TIME RANGES
STARTING FROM NEWEST-CHANGED-FILES
TIME RANGE AND ENDING AT OLDEST-
CHANGED-FILES TIME RANGE, WHEREIN THE
TIME RANGES ADD UP TO AN AUTO-COMMIT
PERIOD ASSOCIATED WITH THE AUTO-COMMIT
OPERATION

Y
520\ REPEATEDLY UPDATING A COUNT OF FILES

WHOSE FILE-CHANGE-TIME IS ASSOCIATED
RESPECTIVELY WITH ONE OF THE ALLOCATED
TIME RANGES, WHEREIN THE UPDATING IS
CARRIED OUT WHENEVER THE PREDEFINED
TIME RANGE LAPSES

A4
530\ DETECTING, EVERY TIME THE PREDEFINED

TIME RANGE LAPSES, AN OCCURRENCE OF AN
AUTO-COMMIT OPERATION APPLIED TO AT
LEAST ONE OF THE FILES STORED ON THE
VOLUME WITHIN A DURATION OF THE TIME

SLOT SINCE THE UPDATING, WHENEVER THE

COUNT OF THE FILES ASSOCIATED WITH THE

OLDEST-CHANGED-FILES TIME SLOT IS NON-
ZERO

1
(e
[en]

Figure 5

US 10,275,465 B2

1
METHOD AND SYSTEM FOR SCAN-FREE
DETECTION OF AUTO-COMMITTED FILES
IN A WRITE-ONCE-READ-MANY STORAGE
DEVICES

FIELD OF THE INVENTION

The present invention relates generally to the field of
storage devices, and more particularly to such devices
compliant with write-once-read-many (WORM) standards.

BACKGROUND OF THE INVENTION

Prior to the background of the invention being set forth,
it may be helpful to provide definitions of certain terms that
will be used hereinafter.

The term “file” as used herein refers to a container for
storing data in a file system.

The term “directory” as used herein refers to a cataloging
structure which contains references to other files, and pos-
sibly other directories. The term “file” includes the term
“directory”.

The term “volume” or “logical drive” refers to a single
accessible storage area with a single file system. In a
distributed file system, files of a same volume need not
necessarily stored on the same physical storage device (e.g.
hard disk). From a client perspective, however, files of the
same volume are subject to the same rules and logic. It is the
file system task to handle the management of the files on the
volume in a manner that is transparent to the client of the file
system.

The term “file system object attributes” refers to attributes
of objects (e.g. files) within the file system and may include
metadata associated an object such a time of last change,
time of access, time of modification, as well as owner and
permission data.

The term “ctime” as used herein is an example for file
system object attributes and is defined as the time in which
a specific file has been changed or simply the file-change-
time. On the file system, a ctime gets updated whenever any
of the file attributes are changed, such as changing the
owner, changing the permission or moving the file to another
directory but will also be updated when the file is being
modified.

The term “write-once-read-many” or “WORM” as used
herein is a term used for special, write-once data storage
devices. The WORM storage is widely used for the purpose
of protecting and preserving digital documents under regu-
lation (e.g., broker-dealer legal requirements). The WORK
rules may be configured by the client and are applied for all
files in a volume on which the WORM rules are defined.

A WORM storage should protect committed files, which
are files that were distinguished in some way by the WORM
protocol of the storage. The WORM storage protects the
committed files for a given retention time period. At the end
of the retention period the files may be deleted by the user.

Auto-commit is a procedure which is used to commit
many files automatically by the file system. Namely, the
auto-commit rule states that any file becomes committed if
it was not changed for a given time period (referred herein
as the auto-commit period). For example, by setting the
auto-commit period to one hour, the administrator may
commit all the existing files that were not changed in the past
hour, together with any file that will remain unchanged for
at least one hour in the future.

The auto-commit procedure presents a great challenge in
the implementation of WORM storage device.

20

25

35

40

45

65

2

According to the WORM requirements a specified vol-
ume, must not be deleted as a whole if it contains committed
files. It is therefore necessary for the storage system to block
such delete attempts if committed files exist in the volume.

To this end it is necessary to calculate the future time in
which all the current files in a specified volume have expired
and then, and only then, the entire volume to which the
specified WORM rules apply can be deleted. This time is
called the maximal expiration time of the volume which is
sometimes referred to as the retention period of the com-
mitted files.

However, the implicit nature of auto-commit operation
requires the file system managing the volumes to take some
action to veritfy that there are no auto-committed files, before
allowing the user to delete the specific volume. For example,
all the files in the volume should be scanned to find which
files were not changed for the auto-commit period, and
check that all the auto-committed files are past their reten-
tion time.

Existing technologies prevent the deletion of a storage
unit which contains WORM committed files in either of the
following ways:

Always blocking the deletion of a volume which is not
empty, regardless of the WORM status of the files in this
volume. This solution is a strong limit, as the administrator
is required to check and delete each file in the volume before
deleting the entire volume.

Another known solution is performing a periodical scan
over all the files in the specific volume to identify auto-
committed files and calculate the maximal expiration time.
The drawbacks of this solution are the overhead of the
repeated scan and the discovery time of the auto-committed
files (meaning auto-commit may take place only few hours
after the designated time, when the file is scanned).

SUMMARY OF THE INVENTION

Some embodiments of the present invention provide a
method for fast detection of presence of auto-committed
files in device volume managed by a file system, together
with a fast calculation of the time when the entire volume
may be deleted. The advantage is increased efficiency for the
file system, with no performance penalty caused by long
scans, while having the maximal expiration time of the
volume always.

Some embodiments of the present invention are based on
the fact that in order to block illegal delete of the entire
volume it is sufficient to know if there is at least one file,
which did not change for the auto-commit time period and
is therefore a committed file that should not be deleted
throughout the defined retention period.

Some embodiments of the present invention enable a file
system that manages a plurality of volumes, to keep on-
going track of the number of unchanged files per each of the
volumes it manages, by updating a set of counters monitor-
ing whenever a file is created, changed or deleted thereby
detecting an occurrence of an auto commit operation as it
happens.

According to some embodiments of the present invention,
whenever a time at a duration of the time range (time slot)
has lapsed (i.e. the time slot has expired), the count of
younger counters (bins) is moved to the counters that are one
time range older, whereas the files on the oldest counters are
committed hence the expiry date of the entire volume is
calculated (and updated if needed be). Additionally, the
counter of the lowest time range (being the youngest coun-
ter) is zeroed.

US 10,275,465 B2

3

According to some embodiments of the present invention,
in a response to increasing the predefined retention period
into an updated retention period, updating the expiration
date based on the updated retention period.

According to some embodiments of the present invention,
in a response to changing the predefined auto-commit period
into an updated auto-commit period, the file system is
configured to add or subtracting a number of the counters in
the set of counters so that the overall time ranges associated
with the counters add up to the updated auto-commit period.
By the aforementioned feature, a client or the file system
administrator can configure the auto commit period for each
one or more volumes which dictates the number of counters
that need to be used in order to monitor the ctime of all files
in a specified volume for the entire updated auto commit
period.

According to some embodiments of the present invention,
in response to changing a length of the time range being the
temporal resolution of the counter update period, into an
updated time range (hence a lower or higher temporal
resolution), the file system may be configured to add or
subtract a number of the counters in the set of counters so
that the overall updated time ranges associated with the
counters add up to the auto-commit period. By the afore-
mentioned feature, a client or the file system administrator
can configure the temporal resolution of the update process
for the counters which dictates the resolution of the detec-
tion mechanism for auto committed files.

BRIEF DESCRIPTION OF THE DRAWINGS

The subject matter regarded as the invention is particu-
larly pointed out and distinctly claimed in the concluding
portion of the specification. The invention, however, both as
to organization and method of operation, together with
objects, features, and advantages thereof, may best be under-
stood by reference to the following detailed description
when read with the accompanying drawings in which:

FIG. 1 is a block diagram illustrating non-limiting exem-
plary architecture of a file system in accordance with some
embodiments of the present invention;

FIG. 2 is a timing diagram illustrating an aspect in
accordance with some embodiments of the present inven-
tion;

FIG. 3 is a timing diagram illustrating another aspect in
accordance with some embodiments of the present inven-
tion;

FIG. 4 is a timing diagram illustrating yet another aspect
in accordance with some embodiments of the present inven-
tion; and

FIG. 5 is a high-level flowchart illustrating non-limiting
exemplary method in accordance with some embodiments of
the present invention.

It will be appreciated that for simplicity and clarity of
illustration, elements shown in the figures have not neces-
sarily been drawn to scale. For example, the dimensions of
some of the elements may be exaggerated relative to other
elements for clarity. Further, where considered appropriate,
reference numerals may be repeated among the figures to
indicate corresponding or analogous elements.

DETAILED DESCRIPTION OF THE
INVENTION

In the following description, various aspects of the pres-
ent invention will be described. For purposes of explanation,
specific configurations and details are set forth in order to

10

15

20

25

30

35

40

45

50

55

60

65

4

provide a thorough understanding of the present invention.
However, it will also be apparent to one skilled in the art that
the present invention may be practiced without the specific
details presented herein. Furthermore, well known features
may be omitted or simplified in order not to obscure the
present invention.

Unless specifically stated otherwise, as apparent from the
following discussions, it is appreciated that throughout the
specification discussions utilizing terms such as “process-
ing,” “computing,” “calculating,” “determining,” or the like,
refer to the action and/or processes of a computer or com-
puting system, or similar electronic computing device, that
manipulates and/or transforms data represented as physical,
such as electronic, quantities within the computing system’s
registers and/or memories into other data similarly repre-
sented as physical quantities within the computing system’s
memories, registers or other such information storage, trans-
mission or display devices.

In order to address the drawbacks of the prior art, some
embodiments of the present invention are aimed at detecting
an occurrence of an auto commit operation applied to at least
one file on a specific volume and further calculate the
maximal expiration time of the volume on the storage
device. The detection may be achieved, as detailed herein-
after, using sliding counters

Advantageously, some embodiments of the present inven-
tion enable the system administrator to change the values of
the auto-commit period or the retention period.

The solution in accordance with embodiments of the
present invention makes use of an existing file attribute that
keeps the last time the file was changed, called ctime. It is
noted that the ctime of a specified file does not change once
the file is committed.

In accordance with some embodiments of the present
invention, the auto-commit time period may be divided into
time ranges (e.g., each range is one hour), possibly using a
counter for each time range. Each counter holds the number
of files that were not changed from that time. Namely, that
their ctime attribute falls within the corresponding time
range of the counter.

In accordance with some embodiments of the present
invention, at the end of the duration of a single time range
(e.g., every one hour), the last counter holds the number of
newly auto-committed files. These files have common expi-
ration date which complies with the current retention time
defined (possibly by the user/client) for each volume on the
file system. In a case that the expiration date is later than the
maximal expiration date defined for the specific volume in
the file system, then it becomes the new maximal expiration
time of the volume spanning or stored on one of more
storage devices. The last counter can then be discarded, and
a new counter is added as the first counter.

FIG. 1 is a block diagram illustrating non-limiting exem-
plary and simplified architecture of a distributed file system
100 implementing a Network Attached Storage (NAS) in
accordance with embodiments of the present invention.
Distributed file system 100 may include a distributed file
server 120 compliant with write-once-read-many (WORM)
rules associated with an auto-commit operation applied to
files managed by file system 100.

Distributed file server 120 may include a plurality of
nodes (aka controllers) 130-1 to 130-N connected to a bus
180 operating in Internet Small Computer Systems Interface
(iSCSI), a fiber channel (FC) or the like. Bus 180 connects
distributed file server 120 to a plurality of block storage
devices 190 possibly configured as a part of a Storage Area

29 <

US 10,275,465 B2

5

Network (SAN) device aligned, for example, in a Redundant
Array of Independent Disks (RAID) configuration.

Each of nodes 130-1 to 130-N may include a central
processing unit (CPU) 160-1 to 160-N, and a respective
random access memory (RAM) 150-1 to 150-N respectively,
on which several processes are being executed.

Nodes 130-1 to 130-N may communicate with a plurality
of clients (not shown here) over network protocols such as
Network File System (NFS) and Server Message Block
(SMB) wherein the clients send various commands relating
to files stored on file system 100 and managed by distributed
files server 120.

Some of the processes running over nodes 130-1 to 130-N
may include on or more file system daemons (FSDs) 170-1
to 170-N. Each of nodes 130-1 to 130-N may include one or
more FSDs which serve as containers for services and
effectively control a specified number of allocated files
(known as domain) in distributed file system 100.

Files in distributed file server 120 are distributed across
FSDs 170-1 to 170-N and across nodes 130-1 to 130-N
based on some load balancing mechanism. Each of nodes
130-1 to 130-N on distributed file server 120 may include
respective program memory 140-1 to 140-N where files and
file object attributes (e.g., file metadata) are stored imme-
diately before they are being uploaded to data storage
devices 190.

It is noted that while volumes 192 are logic entities
defined and managed by the clients, from the point of view
of file system 100, a specific volume may span over one or
more of data storage devices (which are physical entities).
Additionally, while a specific number of files (e.g., domain)
are allocated to a specific node of nodes 130-1 to 130-N, files
from more than one domain (or node) may be associated
with a specific volume.

Therefore, each of FSDs 170-1 to 170-N is allocated with
its own files stored on one or more volumes 192 which in
turn are stored on one or more data storage devices 190. As
file system 100 may be compliant with WORM rules, some
of the files on each volume may be committed files 194
which is indicative that the volume associated with com-
mitted files 194 cannot be deleted throughout the maximal
retention period.

For each of volumes 192 a specified (and possibly dif-
ferent) set of WORM rules (e.g. auto-commit period and
retention period) may apply. Therefore, each of nodes 130-1
to 130-N need to adhere to all WORM rules as applied to all
volumes 194 on data storage devices 190 because at least
theoretically, at least some the committed files 194 each on
one of the volumes 192 may be associated with any one of
the nodes 130-1 to 130-N.

In accordance with embodiments of the present invention,
each one of nodes (file system managers) 130-1 to 130-N
may be responsible for its own share (domain) of the entire
files in the file system, without overlapping between the
domains.

As explained above, this share of files (domain) may
include files from all the volumes which may need be
compliant with specified WORM rules.

In accordance with embodiments of the present invention,
in order to monitor the auto-committed files 194 a set of
counters 196 may allocated to each volume of volumes 192
wherein the counters may be stored on data storage devices
190 (as well as on program memories 140-1 to 140-N) and
hold metadata relating to files associated with a respective
volume.

Specifically, counters may be updated by a respective
node in a manner that will be detailed below, based on the

10

15

20

25

30

35

40

45

50

55

60

65

6

number of files having a change file time (ctime) within one
of a plurality of time ranges spanning the auto commit time
period.

Thus, according to embodiments of the present invention,
every node of nodes 130-1 to 130-N needs to handle all of
volumes 192 and hence handles all WORM policy engines
and all the counter sets.

In other words, there is one counter set per volume, and
all nodes 130-1 to 130-N update counters 196 of all volumes
192. As indicated above, every volume may be stored on
several data storage devices 190. Therefore, if each domain
of files which is managed by FSDs 170- to 170-N is
represented in each of volumes 192 it is sufficient to count
the ctime of the files in each domain and monito, using the
counters, the time files become auto-committed. Then, for
each domain, the maximal retention time becomes the
retention time for the files of this domain. Since all domains
may be represented in a specific volume, it is then required
to repeat the monitoring of the ctime counting in all
domains. The maximal retention time in all domains then
indicate the maximal retention time for the respective vol-
ume, which is used and updated if needed, to comply with
the WORM rules for each volume. More specifically, in
accordance with embodiment of the present invention, for
each of volumes 192 stored on a plurality of storage devices
190, there is provided a set of counters 196, for each of
volumes 192, each of the counters associated with a non-
overlapping time range starting from a newest-changed-files
time range and ending at an oldest-changed-files time range,
wherein the time ranges add up to an auto-commit period
associated with the auto-commit operation, wherein the
counters are stored on the at least one data storage device
190.

According to some embodiments of the present invention,
each of nodes 130-1 to 130-N may include sets of instruc-
tions stored on program memory 140-1 to 140-N that when
executed on respective CPU 160-1 to 160-N and RAM
150-1 to 150-N are configured to: repeatedly update respec-
tive counts on the plurality of counters whose file-change-
time is associated respectively with one of the allocated time
range, wherein the update is carried out at in a temporal
resolution of the time range; and determine an occurrence of
an auto-commit operation applied to at least one of the files
stored on the volume, whenever the count of the files
associated with the oldest-changed-files time range becomes
non-zero.

According to some embodiments of the present invention,
the WORM rules may include a predefined retention period
and an expiration date, wherein during the predefined reten-
tion period and until the expiration date, the respective
volume should not be deleted as long as the volume contains
auto-committed files.

FIG. 2 is a timing diagram illustrating the life cycle of
files in a WORM compliant file system, in accordance with
some embodiments of the present invention. Step 200 shows
a file with no data in it. In step 210 some data is written and
then again more data is written to the file in step 230. Then,
nothing in the file changes in step 240 until the auto-commit
period lapses and the file becomes committed in step 250
and cannot be deleted until the retention period expires on
step 260 and only then it can be deleted as in step 270.

According to some embodiments of the present invention,
the step of repeatedly updating of the counters may include:

incrementing a count associated with the newest changed

files time range, whenever a file is created in the
volume;

US 10,275,465 B2

7

decrementing a count associated with a time range that
contains a file-change-time of a file that is deleted in the
volume; and

incrementing a count associated with a time range that

contains a file-change-time of a file that is modified and
decrementing a count associated with a previous time
range.

According to some embodiments of the present invention,
whenever a time at a duration of the time range (time slot)
has lapsed (i.e. the time slot has expired), the count of
younger counters (bins) is moved to the counters that are one
time range older, whereas the files on the oldest counters are
committed hence the expiry date of the entire volume is
calculated (and updated if needed be). Additionally, the
counter of the lowest time range (being the youngest coun-
ter) is zeroed.

FIG. 3 is a timing diagram illustrating another aspect in
accordance with some embodiments of the present inven-
tion. All N counters at time T are shown where Counter(1)
indicates the files with the oldest ctime, and counter(N)
indicates the files with the newest ctime arranges per pre-
defined time ranges (time slots). Upon update after the lapse
of the time slot AT, Counter(1) is checked and if non zero,
it means files were auto-committed. Then all counters are
being updated with the count in the counter of a newer
counter, and the Counter (N+1) is zeroed as the one folding
the freshest data on ctimes.

FIG. 4 is a timing diagram illustrating yet another aspect
in accordance with some embodiments of the present inven-
tion where auto commit time (Tc) and retention period (Tr)
can be changes per user definition without affecting how
some embodiments of the present invention is implemented.

According to some embodiments of the present invention,
in a response to increasing the predefined retention period
into an updated retention period, updating the expiration
date based on the updated retention period.

According to some embodiments of the present invention,
in a response to changing the predefined auto-commit period
into an updated auto-commit period, the file system is
configured to add or subtracting a number of the counters in
the set of counters so that the overall time ranges associated
with the counters add up to the updated auto-commit period.
By the aforementioned feature, a client or the file system
administrator can configure the auto commit period for each
one or more volumes which dictates the number of counters
that need to be used in order to monitor the ctime of all files
in a specified volume for the entire updated auto commit
period.

According to some embodiments of the present invention,
in response to changing a length of the time range being the
temporal resolution of the counter update period, into an
updated time range (hence a lower or higher temporal
resolution), the file system may be configured to add or
subtract a number of the counters in the set of counters so
that the overall updated time ranges associated with the
counters add up to the auto-commit period. By the afore-
mentioned feature, a client or the file system administrator
can configure the temporal resolution of the update process
for the counters which dictates the resolution of the detec-
tion mechanism for auto committed files.

Advantageously, the aforementioned mechanism allows a
system administrator to have the maximal expiration time in
the WORM storage unit at all times, without the overhead of
periodical scan.

The aforementioned framework may be denoted herein as
an auto-commit sliding window, and is described hereinafter
in further detail below.

25

40

45

60

8

For example, if the auto-commit time period is three
hours. Three counters are defined, each of which corre-
sponds to a one hour. The first counter is the number of files
that were not changed in the past hour, the second counter
is the number of files that were not changed in the past two
hours and the third counter is the number of files that were
not changed for the last three hours.

In accordance with some embodiments of the present
invention, whenever a new file is created in the storage unit,
the first counter is incremented by one. If a file is deleted, its
ctime attribute may be used to decrement the appropriate
counter. If an existing file is changed, its ctime attribute may
be used to decrement the appropriate counter and increment
the first counter by one.

In accordance with some embodiments of the present
invention, the counter may be updated only when a file
moves to another time range. In other words, if the size of
the time range is one hour, then a file that is repeatedly
changed will cause the counters to be updated only once per
hour at the most.

Auto-Commit Sliding Window

In accordance with some embodiments of the present
invention, the role of the sliding window is to discover if
auto-commit occurred within a given time granularity. To
this purpose we count the number of files that were changed
at each time interval.

Sliding Window Frame

In accordance with some embodiments of the present
invention, Tc is denoted herein as the auto-commit time. In
further details, a file is first being associated with a counter
(bin) that is being aligned or shifted every predefined time
range (time slot, defining the resolution of the auto commit
detection mechanism). Then a file is regarded as committed
if the file has not been changed for the last Tc+bin alignment
time (the number of time shifts multiplied by the duration of
the time range or time slot)

In accordance with some embodiments of the present
invention, Tr may be the retention period of committed files,
in which the files cannot be changed or deleted. The count-
ing is done over a total time period equal to Tc. This time
period is divided into time ranges, where each range has its
own counters as in formula (1) herein:

Time range Ar=7¢/Number of counters

M

In accordance with some embodiments of the present
invention, each counter counts the number of files that their
ctime falls at the corresponding time interval.

Updating the Sliding Window

In accordance with some embodiments of the present
invention, the counters in the sliding window may be
updated when:

File creation—{irst counter is incremented;

File deletion—counter that corresponds to file’s ctime is

decremented; and

File modification—If the new ctime falls in a different

range, the counter of the old ctime is decremented and
the counter of the new ctime is incremented.
Calculating the Maximal Expiration Time

In accordance with some embodiments of the present
invention, every time the time slot expires (e.g., the pre-
defined time range has lapsed) then the oldest counter (bin)
is checked and if it is not zero, then the maximal expiration
time (i.e., the expiry date of the entire volume) is updated by
adding the retention time to the current time.

US 10,275,465 B2

9

Accounting for Changes in the Auto-Commit Time and
Retention Period

In accordance with some embodiments of the present
invention, both the retention period and the auto-commit
period can be changed by the administrator. A file system in
accordance with embodiments of the present invention may
commit any file that remains unchanged for the auto-commit
time period. The time of commit may be the time in which
a file becomes auto-committed (can only happen once). The
file remains committed for the retention period, starting at
the time of commit.

Accounting for Changes in the Retention Period

In accordance with some embodiments of the present
invention, at first, the size of the retention period is the
default retention period at the time of commit. If the default
retention time is decreased, then files that are already
committed with longer retention period are not affected.

Obviously, reducing the default retention time cannot
reduce the maximal expiration date (since expiration date of
a committed file is never decreased). Only the next auto-
committed files will be assigned with the new retention time.

According to some embodiments of the present invention
if the default retention time is increased, then files that are
already committed with a shorter retention period will not be
affected retroactively. This will not affect the overall expiry
date of the volume so no compliance issues with WORM
rules may occur.

For example, in a case of a file which was auto-committed
on Jan. 1, 2017 with retention of one year (i.e. to be expired
on Jan. 1, 2018). If the administrator changed the retention
period to 6 months, the file will still be expired on Jan. 1,
2018.

According to further embodiments of the present inven-
tion, it is also possible to change the auto commit time by
adding counters or reducing their number as well as increas-
ing or reducing the duration of each time range associated
with a counter.

Similarly, the resolution of the auto commit detection
mechanism may be controlled by changing the time range
and the number of counters respectively so as to maintain the
auto commit period.

A person having ordinary skills in the art will know, based
in embodiments described herein, how to implement chang-
ing of the auto commit period as well as controlling the
resolution of the auto commit detection mechanism.
Accounting for Changes in the Auto-Commit Time Period

As mentioned before, a file system in accordance with
embodiments of the present invention may commit any file
that remains unchanged for the auto-commit time period.

Changes in the auto-commit time take effect immediately
(i.e., applied on the existing files retroactively).

In accordance with some embodiments of the present
invention, if the auto-commit time period is decreased
(hence files should be committed faster), the current sliding
window before the change has all the necessary counters to
update the max expiration date of the volume. For example,
if the auto-commit time period was initially two hours and
if the resolution is one hour, the sliding window consists of
two counters: the first counter is the number of files that
were last changed up to one hour ago, and the second
counter is the number of files that were last changed more
than an hour ago. Every hour the a file system in accordance
with embodiments of the present invention examines the
value of the second counter, updates the maximal expiration
time, shifts the first counter to be the second, and resets the
first counter to zero. Now, if the administrator changed the
auto-commit time to one hour, then the files represented by

10

15

20

25

30

35

40

45

50

55

60

65

10

the second counter (i.e., more than an hour old) are imme-
diately auto-committed and the maximal expiration time is
updated accordingly. The second counter is now the only
counter in the sliding window.

If the auto-commit time period is increased (hence files
should be committed slower), then this obviously cannot
change the current value of the maximal expiration date of
the volume, as all the files which meet the new criterion
already met the previous one.

Therefore, once the auto-commit period is changed, the
size of the sliding window can be made the exact size of the
new auto-commit time period. The data for the new sliding
window is filled using the previous window, by moving the
old counters to the appropriate bin in the new window.

The size of the time interval (or time range) controls the
precision (or temporal resolution) in detecting auto-commit
(only concerning the maximal expiration time of the vol-
ume). For example, if the time interval is one hour then the
auto-commit time (and hence the file expiration date) is at
the worst one hour past the actual time. It follows that the
max expiration date is at worst one hour past the real
expiration date of the volume (but never sooner than the
accurate time)

Advantageously, a file system in accordance with embodi-
ments of the present invention allows customers of the file
system to use the WORM feature without the performance
penalty experienced in other NAS products, and without
compromising in the administrator abilities to manage the
NAS system

Advantageously, any scale out NAS provider may want to
use a file system in accordance with embodiments of the
present invention for evaluating any automatic time depen-
dent changes in some file characteristic (e.g. for archiving
cold data or any other maintenance operation).

FIG. 5 is a high-level flowchart illustrating non-limiting
exemplary method in accordance with embodiments of the
present invention. Method 500 is a method of determining
an occurrence of an auto commit operation applied to files
in a file system that is compliant with write-once-read-many
(WORM) rules associated with the auto-commit operation
associated with respective volumes stored on at least one
data storage device. Method 500 may include the following
steps: allocating a set of counters, for each of the volumes,
each of the counters associated with a non-overlapping time
range starting from a newest-changed-files time range and
ending at an oldest-changed-files time range, wherein the
time ranges add up to an auto-commit period associated with
the auto-commit operation, wherein the counters are stored
on the at least one data storage device 510; repeatedly
updating respective counts on the plurality of counters
whose file-change-time is associated respectively with one
of'the allocated time range, wherein the update is carried out
at in a temporal resolution of the time range 530; and
determining an occurrence of an auto-commit operation
applied to at least one of the files stored on the volume,
whenever the count of the files associated with the oldest-
changed-files time range becomes non-zero 530.

According to some embodiments of the present invention,
the WORM rules may include a predefined retention period
and an expiration date, wherein during the predefined reten-
tion period and until the expiration date, the respective
volume should not be deleted as long as the volume contains
auto-committed files, wherein responsive to the step of
detecting of an occurrence of an auto-commit operation at a
current time 530, the expiration date for the respective
volume is updated whenever the predefined retention period

US 10,275,465 B2

11

plus the current time exceeds the expiration date previously
defined for the respective volume.

According to some embodiments of the present invention,
wherein the step of repeatedly updating of the counters 520
may include:

incrementing a count associated with the newest changed

files time range, whenever a file is created in the
volume;

decrementing a count associated with a time range that

contains a file-change-time of a file that is deleted in the
volume; and

incrementing a count associated with a time range that

contains a file-change-time of a file that is modified and
decrementing a count associated with a previous time
range.

According to some embodiments of the present invention,
after the lapsing of each time slot (time range), carrying out
a step of updating the count of each of the time ranges, with
the count of its preceding time range and then zeroing the
count of the files associated with the newest-changed-files
time range.

According to some embodiments of the present invention,
wherein in a response to changing the predefined auto-
commit period into an updated auto-commit period, Method
500 includes the step of adding or subtracting a number of
the counters in the set of counters so that the overall time
ranges associated with the counters add up to the updated
auto-commit period. By the aforementioned feature, a client
or the file system administrator can configure the auto
commit period for each one or more volumes which dictates
the number of counters that need to be used in order to
monitor the ctime of all files in a specified volume for the
entire updated auto commit period.

As may be implemented by a person having ordinary
skills in the art, and based on some embodiments of the
present invention, in response to changing a length of the
time range being the temporal resolution of the counter
update period, into an updated time range (hence a lower or
higher temporal resolution), method 500 may be further
improved to include the step of adding or subtracting a
number of the counters in the set of counters so that the
overall updated time ranges associated with the counters add
up to the auto-commit period. By the aforementioned fea-
ture, a client or the file system administrator can configure
the temporal resolution of the update process for the coun-
ters which dictates the resolution of the detection mecha-
nism for auto committed files.

In accordance with some embodiments of the present
invention method 500 may be implemented by a non-
transitory computer readable medium that includes a set of
instructions, that when executed, cause the least one com-
puter processor to: allocate a plurality of non-overlapping
time ranges starting from a newest-changed-files time range
and ending at an oldest-changed-files time range, wherein
the time ranges add up to an auto-commit period associated
with the auto-commit operation; repeatedly update a count
of files whose file-change-time is associated respectively
with one of the allocated time ranges, wherein the updating
is carried out at a frequency of once per the time range; and
detect an occurrence of an auto-commit operation applied to
at least one of the files stored on the volume within a
duration of the time range since the updating, whenever the
count of the files associated with the oldest-changed-files
time range is non-zero.

In order to implement the method according to some
embodiments of the present invention, a computer processor
may receive instructions and data from a read-only memory

10

15

20

25

30

35

40

45

50

55

60

65

12

or a random access memory or both. At least one of
aforementioned steps is performed by at least one processor
associated with a computer. The essential elements of a
computer are a processor for executing instructions and one
or more memories for storing instructions and data. Gener-
ally, a computer will also include, or be operatively coupled
to communicate with, one or more mass storage devices for
storing data files. Storage modules suitable for tangibly
embodying computer program instructions and data include
all forms of non-volatile memory, including by way of
example semiconductor memory devices, such as EPROM,
EEPROM, and flash memory based solid state disks (SSDs)
and also magneto-optic storage devices.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in
one or more computer readable medium(s) having computer
readable program code embodied thereon.

Any combination of one or more computer readable
medium(s) may be utilized. The computer readable medium
may be a computer readable signal medium or a computer
readable storage medium. A computer readable storage
medium may be, for example, but not limited to, an elec-
tronic, magnetic, optical, electromagnetic, infrared, or semi-
conductor system, apparatus, or device, or any suitable
combination of the foregoing. More specific examples (a
non-exhaustive list) of the computer readable storage
medium would include the following: an electrical connec-
tion having one or more wires, a portable computer diskette,
a hard disk, a random access memory (RAM), a read-only
memory (ROM), an erasable programmable read-only
memory (EPROM or Flash memory), an optical fiber, a
portable compact disc read-only memory (CD-ROM), an
optical storage device, a magnetic storage device, or any
suitable combination of the foregoing. In the context of this
document, a computer readable storage medium may be any
tangible medium that can contain, or store a program for use
by or in connection with an instruction execution system,
apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in base band or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-
magnetic, optical, or any suitable combination thereof. A
computer readable signal medium may be any computer
readable medium that is not a computer readable storage
medium and that can communicate, propagate, or transport
a program for use by or in connection with an instruction
execution system, apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, includ-
ing but not limited to wireless, wire-line, optical fiber cable,
RF, etc., or any suitable combination of the foregoing.
Computer program code for carrying out operations for
aspects of the present invention may be written in any
combination of one or more programming languages,
including an object oriented programming language such as
Java, Smalltalk, C++ or the like and conventional procedural
programming languages, such as the “C” programming

US 10,275,465 B2

13

language or similar programming languages. The program
code may execute entirely on the user’s computer, partly on
the user’s computer, as a stand-alone software package,
partly on the user’s computer and partly on a remote
computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the
user’s computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for
example, through the Internet using an Internet Service
Provider).

Aspects of the present invention are described above with
reference to flowchart illustrations and/or portion diagrams
of methods, apparatus (systems) and computer program
products according to some embodiments of the invention.
It will be understood that each portion of the flowchart
illustrations and/or portion diagrams, and combinations of
portions in the flowchart illustrations and/or portion dia-
grams, can be implemented by computer program instruc-
tions. These computer program instructions may be pro-
vided to a processor of a general purpose computer, special
purpose computer, or other programmable data processing
apparatus to produce a machine, such that the instructions,
which execute via the processor of the computer or other
programmable data processing apparatus, create means for
implementing the functions/acts specified in the flowchart
and/or portion diagram portion or portions.

These computer program instructions may also be stored
in a computer readable medium that can direct a computer,
other programmable data processing apparatus, or other
devices to function in a particular manner, such that the
instructions stored in the computer readable medium pro-
duce an article of manufacture including instructions which
implement the function/act specified in the flowchart and/or
portion diagram portion or portions.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps
to be performed on the computer, other programmable
apparatus or other devices to produce a computer imple-
mented process such that the instructions which execute on
the computer or other programmable apparatus provide
processes for implementing the functions/acts specified in
the flowchart and/or portion diagram portion or portions.

The aforementioned flowchart and diagrams illustrate the
architecture, functionality, and operation of possible imple-
mentations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each portion in the flowchart or
portion diagrams may represent a module, segment, or
portion of code, which comprises one or more executable
instructions for implementing the specified logical
function(s). It should also be noted that, in some alternative
implementations, the functions noted in the portion may
occur out of the order noted in the figures. For example, two
portions shown in succession may, in fact, be executed
substantially concurrently, or the portions may sometimes be
executed in the reverse order, depending upon the function-
ality involved. It will also be noted that each portion of the
portion diagrams and/or flowchart illustration, and combi-
nations of portions in the portion diagrams and/or flowchart
illustration, can be implemented by special purpose hard-
ware-based systems that perform the specified functions or
acts, or combinations of special purpose hardware and
computer instructions.

In the above description, an embodiment is an example or
implementation of the inventions. The various appearances

10

15

20

25

30

35

40

45

50

55

60

65

14

of “one embodiment,” “an embodiment” or “some embodi-
ments” do not necessarily all refer to the same embodiments.

Although various features of the invention may be
described in the context of a single embodiment, the features
may also be provided separately or in any suitable combi-
nation. Conversely, although the invention may be described
herein in the context of separate embodiments for clarity, the
invention may also be implemented in a single embodiment.

Reference in the specification to “some embodiments”,
“an embodiment”, “one embodiment” or “other embodi-
ments” means that a particular feature, structure, or charac-
teristic described in connection with the embodiments is
included in at least some embodiments, but not necessarily
all embodiments, of the inventions.

It is to be understood that the phraseology and terminol-
ogy employed herein is not to be construed as limiting and
are for descriptive purpose only. The principles and uses of
the teachings of the present invention may be better under-
stood with reference to the accompanying description, fig-
ures and examples.

It is to be understood that the details set forth herein do not
construe a limitation to an application of the invention.
Furthermore, it is to be understood that the invention can be
carried out or practiced in various ways and that the inven-
tion can be implemented in embodiments other than the ones
outlined in the description above.

It is to be understood that the terms “including”, “com-
prising”, “consisting” and grammatical variants thereof do
not preclude the addition of one or more components,
features, steps, or integers or groups thereof and that the
terms are to be construed as specifying components, fea-
tures, steps or integers. If the specification or claims refer to
“an additional” element, that does not preclude there being
more than one of the additional element. It is to be under-
stood that where the claims or specification refer to “a” or
“an” element, such reference is not be construed that there
is only one of that element. It is to be understood that where
the specification states that a component, feature, structure,
or characteristic “may”, “might”, “can” or “could” be
included, that particular component, feature, structure, or
characteristic is not required to be included. Where appli-
cable, although state diagrams, flow diagrams or both may
be used to describe embodiments, the invention is not
limited to those diagrams or to the corresponding descrip-
tions. For example, flow need not move through each
illustrated box or state, or in exactly the same order as
illustrated and described. Methods of the present invention
may be implemented by performing or completing manu-
ally, automatically, or a combination thereof, selected steps
or tasks.

The term “method” may refer to manners, means, tech-
niques and procedures for accomplishing a given task
including, but not limited to, those manners, means, tech-
niques and procedures either known to, or readily developed
from known manners, means, techniques and procedures by
practitioners of the art to which the invention belongs. The
descriptions, examples, methods and materials presented in
the claims and the specification are not to be construed as
limiting but rather as illustrative only. Meanings of technical
and scientific terms used herein are to be commonly under-
stood as by one of ordinary skill in the art to which the
invention belongs, unless otherwise defined.

The present invention may be implemented in the testing
or practice with methods and materials equivalent or similar
to those described herein. Any publications, including pat-
ents, patent applications and articles, referenced or men-
tioned in this specification are herein incorporated in their

29 <

US 10,275,465 B2

15

entirety into the specification, to the same extent as if each
individual publication was specifically and individually
indicated to be incorporated herein. In addition, citation or
identification of any reference in the description of some
embodiments of the invention shall not be construed as an
admission that such reference is available as prior art to the
present invention.

While the invention has been described with respect to a
limited number of embodiments, these should not be con-
strued as limitations on the scope of the invention, but rather
as exemplifications of some of the preferred embodiments.
Other possible variations, modifications, and applications
are also within the scope of the invention. Accordingly, the
scope of the invention should not be limited by what has thus
far been described, but by the appended claims and their
legal equivalents.

The invention claimed is:
1. A system comprising:
a file system compliant with write-once-read-many
(WORM) rules associated with an auto-commit opera-
tion applied to files managed by said file system and
associated with respective volumes;
at least one data storage device configured to store said
files of the at least one volume associated with the
WORM rules; and
a set of counters, for each of the volumes, each of the
counters associated with a non-overlapping time range
starting from a newest-changed-files time range and
ending at an oldest-changed-files time range, wherein
the time ranger add up to an auto-commit period
associated with the auto-commit operation, wherein the
counters are stored on the at least one data storage
device,
wherein the file system comprises, for each domain of
files, a file system daemon configured to:
repeatedly update respective counts on the plurality of
counters whose file-change-time is associated
respectively with one of the allocated time range,
wherein the update is carried out at whenever a
duration of the time range lapses; and

determine, at an end of every time range, an occurrence
of an auto-commit operation applied to at least one
of the files stored on the volume, whenever the count
of the files associated with the oldest-changed-files
time range becomes non-zero.

2. The system according to claim 1, wherein the WORM
rules include a predefined retention period and an expiration
date, wherein during the predefined retention period and up
till the expiration date, the volume should not be deleted as
long as the volume contains auto-committed files,

wherein responsive to the detecting of an occurrence of an
auto-commit operation at a current time, the expiration
date for the volume is updated whenever the predefined
retention period plus the current time exceeds the
expiration date previously defined for the volume.

3. The system according to claim 1, wherein the file
system daemon is configured to repeatedly update the coun-
ters by:

incrementing a count associated with the newest changed
files time range, whenever a file is created in said
volume;

decrementing a count associated with a time ranger that
contains a file-change-time of a file that is deleted in
said volume; and

5

10

15

20

25

30

35

40

45

50

55

60

65

16

incrementing a count associated with a time range that
contains a file-change-time of a file that is modified and
decrementing a count associated with the previous file
time range.

4. The system according to claim 1, wherein at an end of
every time range lapsing, said file system is configured to
update the count of each of the time ranges, with the count
of its preceding time range and zero the count of the files
associated with the newest-changed-files time range.

5. The system according to claim 2, wherein responsive to
increasing said predefined retention period into an updated
retention period to the file system is configured to update
said expiration date based on the updated retention period.

6. The system according to claim 1, wherein responsive to
changing said predefined auto-commit into an updated auto-
commit period by said WORM policy engine, in a case that
the updated auto-commit period is shorter than the pre-
defined auto-commit period, the number of allocated time
ranges is decreased by WORM policy engine, starting with
the oldest-changed-files time range and newer time ranges,
based on a ratio between the predefined auto-commit period
and the updated auto-commit period, and

wherein the counters of the discarded time ranges are

inspected, and the maximal expiration time is updated
accordingly.

7. The system according to claim 1, wherein responsive to
changing said predefined auto-commit period into an
updated auto-commit period, adding or subtracting counters
so that the overall time ranges associated with the counters
add up to the updated auto-commit period. the system
according to claim 1, wherein responsive to changing a
length of said time range being said temporal resolution of
the counter update into an updated time range, adding or
subtracting counters so that the overall updated time ranges
associated with the counters add up to the auto-commit
period.

8. A method for determining an occurrence of an auto
commit operation applied to files in a file system that is
compliant with write-once-read-many (WORM) rules asso-
ciated with said auto-commit operation associated with
respective volumes stored on at least one data storage
device;

allocating a set of counters, for each of said volumes, each

of the counters associated with a non-overlapping time
range starting from a newest-changed-files time range
and ending at an oldest-changed-files time range,
wherein said time ranges add up to an auto-commit
period associated with said auto-commit operation,
wherein said counters are stored on said at least one
data storage device;

repeatedly updating respective counts on said plurality of

counters whose file-change-time is associated respec-
tively with one of said allocated time range, wherein
the update is carried out every time a time range lapses;
and

determining, at every time a time range lapses, an occur-

rence of an auto-commit operation applied to at least
one of the files stored on said volume, whenever the
count of the files associated with the oldest-changed-
files time range becomes non-zero.

9. The method according to claim 8, wherein the WORM
rules include a predefined retention period and an expiration
date, wherein during the predefined retention period and
until the expiration date, said volume should not be deleted
as long as said volume contains auto-committed files,

wherein responsive to said detecting of an occurrence of

an auto-commit operation at a current time, said expi-

US 10,275,465 B2

17

ration date for said volume is updated whenever said
predefined retention period plus said current time
exceeds the expiration date previously defined for said
volume.

10. The method according to claim 8, wherein the repeat-
edly updating of said counters comprises:

incrementing a count associated with the newest changed

files time range, whenever a file is created in said
volume;

decrementing a count associated with a time range that

contains a file-change-time of a file that is deleted in
said volume; and

incrementing a count associated with a time range that

contains a file-change-time of a file that is modified and
decrementing a count associated with the file previous
time range.

11. The method according to claim 8, wherein at an end
of every time range lapsing, updating the count of each of
the time ranges, with the count of its preceding time range
and zeroing the count of the files associated with the
newest-changed-files time range.

12. The method according to claim 9, wherein responsive
to increasing said predefined retention period into an
updated retention period, updating said expiration date
based on the updated retention period.

13. The method according to claim 8, wherein responsive
to changing said predefined auto-commit period into an
updated auto-commit period, adding or subtracting a number
of the counters in the set of counters so that the overall time
ranges associated with the counters add up to the updated
auto-commit period.

14. The method according to claim 8, wherein responsive
to changing a length of said time range being said temporal
resolution of the counter update, into an updated time range,
adding or subtracting a number of the counters in the set of
counters so that the overall updated time ranges associated
with the counters add up to the auto-commit period.

15. A non-transitory computer readable medium for deter-
mining an occurrence of an auto commit operation applied
to files in a file system that is compliant with write-once-
read-many (WORM) rules associated with said auto-commit
operation associated with respective volumes stored on at
least one data storage device, the computer readable medium
comprising a set of instructions that when executed cause at
least one computer processor to;

allocate a set of counters, for each of said volumes, each

of the counters associated with a non-overlapping time
range starting from a newest-changed-files time range
and ending at an oldest-changed-files time range,
wherein said time ranges add up to an auto-commit
period associated with said auto-commit operation,
wherein said counters are stored on said at least one
data storage device;

15

20

25

30

35

40

45

50

18

repeatedly update respective counts on said plurality of
counters whose file-change-time is associated respec-
tively with one of said allocated time range, wherein
the update is carried out every time the time range
lapses; and

determine, every time the time range lapses, an occur-

rence of an auto-commit operation applied to at least
one of the files stored on said volume, whenever the
count of the files associated with the oldest-changed-
files time range becomes non-zero.

16. The non-transitory computer readable medium
according to claim 15, wherein the WORM rules include a
predefined retention period and an expiration date, wherein
during the predefined retention period and until the expira-
tion date, said volume should not be deleted as long as said
volume contains auto-committed files,

wherein responsive to said detecting of an occurrence of

an auto-commit operation at a current time, said expi-
ration date for said volume is updated whenever said
predefined retention period plus said current time
exceeds the expiration date previously defined for said
volume.

17. The non-transitory computer readable medium
according to claim 15, wherein the repeatedly updating of
said counters comprises:

incrementing a count associated with the newest changed

files time range, whenever a file is created in said
volume;

decrementing a count associated with a time range that

contains a file-change-time of a file that is deleted in
said volume; and

incrementing a count associated with a time range that

contains a file-change-time of a file that is modified and
decrementing a count associated with the file previous
time range.

18. The non-transitory computer readable medium
according to claim 15, wherein responsive to every lapsing
of the time range, updating the count of each of the time
ranges, with the count of its preceding time range and
zeroing the count of the files associated with the newest-
changed-files time range.

19. The non-transitory computer readable medium
according to claim 16, wherein responsive to increasing said
predefined retention period into an updated retention period,
updating said expiration date based on the updated retention
period.

20. The non-transitory computer readable medium
according to claim 15, wherein responsive to changing said
predefined auto-commit period into an updated auto-commit
period, adding or subtracting a number of the counters in the
set of counters so that the overall time ranges associated with
the counters add up to the updated auto-commit period.

#* #* #* #* #*

